Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Future Sci OA ; 16(3-06): FSO832, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2296095

ABSTRACT

The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.


Epitope mapping is an important tool recently proving efficiency in both diagnosis and vaccine development. Several epitope mapping techniques have been developed for designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping, emphasizing accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines and exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.

2.
Future science OA ; 2023.
Article in English | EuropePMC | ID: covidwho-2261977

ABSTRACT

The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19. Plain language summary Epitope mapping is an important tool recently proving efficiency in both diagnosis and vaccine development. Several epitope mapping techniques have been developed for designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping, emphasizing accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines and exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.

3.
Infect Drug Resist ; 15: 3459-3475, 2022.
Article in English | MEDLINE | ID: covidwho-1933456

ABSTRACT

Background: Fungi are rich source of biologically active metabolites aimed for the improvement of human health through the prevention of various diseases, including infections and inflammatory disorders. Aim: We aimed to in vitro examine the anti-SARS CoV-2 activity of the aqueous extract of each Pleurotus (P.) ostreatus, Lentinula (L.) edodes and Agaricus (A.) bisporus edible mushroom followed by docking analysis of certain metabolites against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-main protease (protease Mpro). Methods: Antiviral and cytotoxic effects were tested on hCoV-19/Egypt/NRC-3/2020/Vero-E6 cells and analyzed via (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide Assay (MTT) assay. Ligand-protein and protein-protein docking studies were performed to explore the interaction of different mushroom extracts at the binding site of protease Mpro. Molecular dynamics (MD) simulations were performed on the most promising ligand-target complexes to investigate their dynamic properties and confirm docking results. Results: Substantial antiviral activities with an IC50 of 39.19, 26.17, and 10.3.3 µg/mL and a selectivity index (SI) of 4.34, 3.44, and 1.5 for P. ostreatus, L. edodes and A. bisporus, were observed, respectively. Docking analysis revealed that, catechin from three mushroom isolates, chlorogenic acid from A. bisporus, kamperferol of P. ostreatus and quercetin from L. edodes, with a C-DOCKER interaction energy in the range of 22.8-37.61 (Kcal/mol) with protease compared to boceprevir ligand of 41.6 (Kcal/mol). Docking of superoxide dismutase, catalase from the three mushrooms, tyrosinase from A. bisporus showed ligand contact surface area with the protein as 252.74 Å2 while receptor contact surface area was 267.23 Å2. Conclusion: P. ostreatus, L. edodes and A. bisporus have potential and remarkable in vitro antiviral activities against SARS-CoV-2. Quercetin from L. edodes, Kaempferol from P. ostreatus, chlorogenic acid and ascorbic acid, catechin, superoxide dismutase and catalase of the three mushrooms extracts were effectively bounded to Mpro of SARS-CoV-2 as conferred by docking analysis.

4.
Biology (Basel) ; 11(3)2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1760340

ABSTRACT

Hospital-acquired pneumonia (HAP) is a substantial public health issue that is associated with high mortality rates and is complicated by an arsenal of microbial etiologies, expressing multidrug-resistant phenotypes, rendering relatively limited therapeutic options. BioFire FilmArray Pneumonia Panel plus (BFPP) is a simple multiplexed PCR system that integrates sample preparation, nucleic acid extraction, amplification, and analysis of microbial etiology, with a turnaround time of about one hour. In comparison to standard culture methods, BFPP is simpler, easier to perform, and can simultaneously detect the most common pathogens involved in lower respiratory tract infections (34 targets). Accordingly, we evaluated the diagnostic performance of the multiplexed BFPP for the rapid detection of 27 clinically relevant respiratory pathogens and 7 genetic markers among 50 HAP cases admitted to the intensive care unit (ICU), who submitted mini-bronchoalveolar (mBAL) specimens. In comparison to standard culture methods, BFPP showed an overall sensitivity of 100% [95% CI; 90-100] and overall specificity of 90% [95% CI; 87.4-92.5] among all the tested bacterial targets. BFPP identified 11 viral targets (22%) among the tested specimens. The BFPP semi-quantitative analysis showed a concordance rate of 47.4% among positive culture specimens. For the investigation of the antibiotic resistance genes, BFPP showed a positive percent agreement (PPA), a negative percent agreement (NPA), and an overall percent agreement (OPA), reaching 97% [95% CI; 90-100], 95% [95% CI; 91.5-97], and 95% [95% CI; 93-97], respectively, with standard antibiotic sensitivity testing. In conclusion, BFPP has the potential to enhance the rapid microbiological diagnosis of HAP cases, and could aid in tailoring appropriate antibiotic therapies.

5.
Medicina (Kaunas) ; 58(1)2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1580585

ABSTRACT

Despite the advance in the management of Coronavirus disease 2019 (COVID-19), the global pandemic is still ongoing with a massive health crisis. COVID-19 manifestations may range from mild symptoms to severe life threatening ones. The hallmark of the disease severity is related to the overproduction of pro-inflammatory cytokines manifested as a cytokine storm. Based on its anti-inflammatory activity through interfering with several pro and anti-inflammatory pathways, colchicine had been proposed to reduce the cytokine storm and subsequently improve clinical outcomes. Molecular docking analysis of colchicine against RNA-dependent RNA polymerase (RdRp) and protease enzymes of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) revealed that colchicine provided a grid-based molecular docking method, C-DOCKER interaction energy 64.26 and 47.53 (Kcal/mol) with protease and RdRp, respectively. This finding indicated higher binding stability for colchicine-protease complexes than the colchicine-RdRp complex with the involvement of seven hydrogen bonds, six hydrogen acceptors with Asn142, Gly143, Ser144, and Glu166 and one hydrogen-bond donors with Cys145 of the protease enzyme. This is in addition to three hydrophobic interactions with His172, Glu166, and Arg188. A good alignment with the reference compound, Boceprevir, indicated high probability of binding to the protease enzyme of SARS-CoV-2. In conclusion, colchicine can ameliorate the destructive effect of the COVID-19 cytokine storm with a strong evidence of antiviral activity by inhibiting the protease enzyme of SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Colchicine/therapeutic use , Coronavirus 3C Proteases/antagonists & inhibitors , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Humans , Molecular Docking Simulation , SARS-CoV-2/drug effects
6.
Future Sci OA ; 8(2): FSO772, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1581608

ABSTRACT

COVID-19 continues to cause significant fatality worldwide. Glucocorticoids prove to play essential roles in COVID-19 management; however, the extensive use of steroids together with the virus immune dysregulation may increase the danger of secondary infections with mucormycosis, an angioinvasive fungal infection. Unfortunately, a definite correlation between COVID-19 and elevated mucormycosis infection cases is now clear worldwide. In this review, we discuss the historical record and epidemiology of mucormycosis as well as pathogenesis and associated host immune response, risk factors, clinical presentation, diagnosis and treatment. Special emphasis is given to its association with the current COVID-19 pandemic, including latest updates on COVID-19-associated mucormycosis cases globally, with recommendations for efficacious management.

7.
Front Cell Infect Microbiol ; 11: 635597, 2021.
Article in English | MEDLINE | ID: covidwho-1362322

ABSTRACT

Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Anti-Bacterial Agents , Bacteria , Humans
8.
Viral Immunol ; 34(8): 510-521, 2021 10.
Article in English | MEDLINE | ID: covidwho-1238177

ABSTRACT

Till today, the globe is still struggling with the newly emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and known as coronavirus disease 2019 (COVID-19). It has resulted in multiple fatalities from SARSs all around the world. A year after the global pandemic, the World Health Organization (WHO) has reported more than 79 million confirmed cases of COVID-19 and over 1.7 million deaths, making it one of the worst and most difficult pandemics encompassed in the modern history. The ongoing triad of escalating infections, mortality, and economic loss has urgently called for recognizing SARS-CoV-2 cell entry mechanisms as a crucial step in the initial stages of infection and to which possible interventional strategies should be targeted. To mediate host cell infections, Coronaviruses utilize the immunogenic studded spikes glycoproteins on its surface as a key factor for attachment, fusion, and entrance to host cells. Herein, we shed the light on a potential strategy involving disruption of SARS-CoV-2 S protein interaction with host cell receptors through design of neutralizing antibodies targeting receptor binding domain in S1 subunit, small peptide inhibitors, peptide fusion inhibitors against S2, host cell angiotensin converting enzymes 2 (ACE2), and protease inhibitors, aiming to pave the way for controlling viral cell entrance. In this review, we also highlight the recent research advances in the antiviral drugs that target the highly exposed spike protein, aiming to stem the COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Delivery Systems , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/metabolism , COVID-19/therapy , COVID-19/virology , Glycoproteins , Humans , Models, Molecular , Protease Inhibitors , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL